

ARA Untermarch

Jahresauswertung 2015

Betrieb

Betriebsparamete	Daten 2015	Richtwert	Kommentar	
Trockensubstanzgehalt (TS) Mittel	[g/l]	2.7	-	Ziel im Winter: > 3.0 g/l
Schlammalter (SA) Mittel	[d]	11.9	>10d (bei T>10°)	Schlammalter ok
Schlammvolumenindex (SVI) Mittel	[ml/g]	98	< 120	Der Belebtschlamm der ARA Untermarch weist genügende Absetzeigenschaften auf.
Klärschlamm	[to TR/Jahr]	428	ı	KVA Bazenheid (Schlammverbrennung)
Strombezug E-Werk	[kWh/Jahr]	623'302	-	Deckungsgrad Eigenproduktion: 44.6 %, erhöhter Luftbedarf Biologie

Organisation / Betriebsführung:

- Der Pikett-Dienst ist organisiert und es steht ausreichend Personal zur Verfügung. Der Personalbedarf wurde auf vier Mitarbeitende erhöht (350 Stellenprozente).
- Die Wartung und der Anlagezustand sind gut.
- Der Jahresbericht 2015 des Zweckverbands liegt vor (www.arauntermarch.ch).
- Der Bericht über die "Zusammenarbeit mit anderen Anlagen im Einzugsgebiet", Hunziker Betatech, vom 17. Februar 2016 wurde ausgearbeitet.

Legende

Belastungsdaten: von ARA selbst erhoben

BSB ₅	Biochemischer Sauerstoffbedarf in 5 Tagen: Sauerstoffkonzentration, die für den biol. Abbau von organischen Verbindungen
	erforderlich ist. Organische Verbindungen können im Gewässer zu Sauerstoffzehrung und Verschlammung führen. BSB₅ ist ein
	Mass für leicht abbaubare organische Stoffe im Abwasser.

CSB Chemischer Sauerstoffbedarf: Sauerstoffkonzentration, welche zur Oxidation der gesamten organischen Stoffe verbraucht wird. CSB ist ein Mass für die Summe aller oxidierbaren Stoffe im Abwasser.

DOC Dissolved organic carbon: Summe aller gelösten Kohlenstoff-Verbindungen im Abwasser.

Einwohnerwert: Mit dem Einwohnerwert lässt sich die Belastung einer Kläranlage abschätzen. Er entspricht der Summe der natürlichen Einwohner und der Einwohnergleichwerte (inkl. der aus Industrie und Gewerbe).

GMW10 Gleitender Mittelwert über 10 Messwerte

Grenzwert-Überschreitung: Gemäss Gewässerschutzverordnung ist eine gewisse Anzahl Grenzwert-Überschreitungen erlaubt. Diese Anzahl wird im Verhältnis zu den jährlich durchgeführten Messungen ermittelt.

GUS Gesamte ungelöste Stoffe: Summe aller Feststoffe im Abwasser.

NH₄-N Ammonium-Stickstoff: Steht im chem. Gleichgewicht mit dem giftigen Ammoniak. Grössere Konzentrationen sind daher für Wasserlebewesen gefährlich. Die Umwandlung in das weniger schädliche Nitrat (NO₃-N) ist vorgeschrieben (Nitrifikation).

NO₂-N Nitrit-Stickstoff: Entsteht als Zwischenprodukt bei der Umwandlung von Ammonium zu Nitrat (Nitrifikation), wenn diese unvollständig abläuft. Nitrit ist ein Fischgift.

Pges Gesamtphosphor: Summe aller Phosphorfraktionen. Phosphor kann zur Überdüngung von Gewässern führen.

Q Durchflussmenge: Notwendig zur Berechnung der Frachten. Massgebend für die hydraulische Belastung der Anlage.

SA Schlammalter: Der Bereich des SA gibt Auskunft über die Aufenthaltszeit einer Belebtschlammflocke im Belebungsbecken.

SVI Schlammvolumenindex: Der SVI ist ein Wert für die Absetzbarkeit des Belebtschlammes. Gut absetzbarer Schlamm weist Werte unter 120 ml/g auf.

TS Trockensubstanzgehalt: Der TS ist die Konzentration der Summe aus suspendierten und aufschwimmenden Stoffen.

Überwachungsdaten: Kontrollmessungen des Labors der Urkantone (4 pro Jahr)

Seite 4 Legende siehe Seite 4 September 2016

Amt für Umweltschutz

ARA Untermarch

Jahresauswertung 2015

Aastrasse 30, 8853 Lachen

ARA Untermarch

Die ARA Untermarch wurde 1973 als klassische Belebungsanlage mit Tiefenbelüftung in Betrieb genommen. Die Anlage wurde 1985, 1998 und 2005 ausgebaut. 2005 wurde die Abwasserstrasse erweitert und teilweise erneuert. Die Anlage verfügt über eine Kapazität von 42'500 biologischen und 52'000 hydraulischen Einwohnerwerten und einer maximalen Durchflussmenge von 240 l/s.

Sie reinigt das Abwasser der Gemeinden Altendorf, Lachen, Galgenen, Wangen und Teile der Gemeinde Schübelbach. Das gereinigte Abwasser wird in den Zürich-Obersee abgeleitet, was ein grosses Verdünnungsverhältnis bewirkt. Die Fremdwassermenge im Einzugsgebiet beläuft sich auf 15% (Auswertung 2010).

ARA-Belastung: Wassermengen und Frachten (Rohabwasser, Mittelwerte)

	2015	2015	2015		2014	2013	2012	2011	2010
	Anzahl Messungen durch ARA (kt. Anforderung in Klammer)	Q resp. Fracht [m³/d resp. kg/d]	Jahres- mittel [EW]	Vergleich zu 2014	Jahres- mittel [EW]	Jahres- mittel [EW]	Jahres- mittel [EW]	Jahres- mittel [EW]	Jahres- mittel [EW]
Abwassermenge (Q)	365 (365)	8'649	24'711	-2.5%	25'333	26'212	27'013	22'161	26'394
Chem. Sauerstoffbedarf (CSB)	107 (73)	3'017	25'144	+2.4%	24'552	21'829	26'923	25'627	20'524
Biol. Sauerstoffbedarf (BSB ₅)	101 (73)	1'687	28'124	-2.4%	28'820	28'329	28'215	27'773	28'408
Gesamtstickstoff (N _{ges}) ¹	0 (73)	345	31'386	+11.2%	28'233	27'129	0	0	
Phosphor (P _{ges.})	112 (73)	41	22'901	-3.2%	23'667	24'175	24'399	24'960	17'152

Legende: 1 Überwachungsdaten des Kantons, nicht gemessen vom Betrieb Annahmen pro EW: 350 l/d, 120 g CSB/d, 60 g BSB $_5$ /d, 11 g $N_{\rm ges}$ /d, 1.8 g $P_{\rm ges}$ /d

September 2016

nicht erfüllt erfüllt

Der N_{ges} im Zulauf wurde vom Betrieb nicht gemessen (jedoch NH₄-N), daher wurden lediglich die vier Überwachungsmessungen des Kantons zur Berechnung der EW verwendet.

Die restlichen Frachten sowie die Abwassermenge waren im Jahr 2015 ähnlich wie in den Vorjahren und liegen innerhalb der üblichen Schwankungen.

Legende siehe Seite 4 Seite 1

ARA Untermarch

Jahresauswertung 2015

Ablaufwerte und Reinigungsleistung

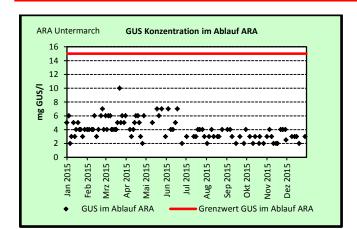
			Anzahl	Grenzwertüberschreitungen (erlaubt in Klammer)							
			Messungen durch ARA (kt. Anforderung in Klammer)	Vorgabe	2015	2014	2013	2012	2011	2010	2009
	Mittelwert	mg/l	99 (73)	15 ¹	4.0	3.5	3.3	3.5	4.0	3.9	4.5
GUS	Grenzwert-Überschreitungen	Anzahl			0 (9)	0 (11)	0 (12)	0 (11)	0 (10)	0 (11)	0 (12)
	Maximalwert	mg/l		50	10.0	8.0	7.0	6.0	7.0	9.0	11.0
CSB	Mittelwert	mg/l	107 (73)	60	23.3	20.9	22.7	21.4	20.0	22.0	
002	Maximum	mg/l			37.5	39.0	43.0	36.0	41.0	39.0	
	Reinigungsleistung (Mittel)	%			94%	94%	93%	94%	95%	94%	
DCD	Mittelwert	mg/l	101 (73)	15 ¹	4.6	4.5	4.6	3.3	3.4	3.0	3.4
BSB ₅	Grenzwert-Überschreitungen	Anzahl			0 (9)	0 (11)	0 [11)	0 (11)	0 (10)	0 (11)	0 (11)
	Maximum	mg/l		40	10.0	11.0	10.0	13.0	9.0	9.0	13.0
	Reinigungsleistung (Mittel)	%		90%	98%	98%	98%	98%	98%	98%	97%
	Unterschreitung Reinigungsleistung	Anzahl			0 (9)	0 (11)	0 (11)				
	Mittelwert	mg/l	42 (73)	10 ¹	6.4	5.6	5.1	4.9	5.4	4.3	7.3
DOC	Grenzwert-Überschreitungen	Anzahl			1 (5)	0 (1)	0 (1)	0 (1)	0 (1)	0 (2)	0 (2)
	Maximalwert	mg/l		20	11.2	5.9	5.6	6.3	6.8	5.0	10.0
	Mittelwert	mg/l	95 (73)	2 ^{1,3}	0.4	0.6	0.7	2.3	4.5	5.0	3.0
NH ₄ -N	Grenzwert-Überschreitungen	Anzahl			0 (8)	6 (11)	2 (11)	23 (11)	29 (10)	50 (11)	51 (11)
	Reinigungsleistung (Mittel)	%		90%	99%	99%	99%	91%	84%	81%	91%
	Unterschreitung Reinigungsleistung	Anzahl			2 (8)	4 (11)	1 (11)				
110.11	Mittelwert	mg/l	91 (73)	0.3 ²	0.16	0.12	0.11	0.26	0.16	0.15	0.14
NO ₂ -N	Richtwert-Überschreitungen	Anzahl			16 (8)	16 (10)	6 (9)	9 (6)	4 (6)	10 (6)	0 (2)
	Mittelwert	mg/l	112 (73)	0.8 1	0.36	0.34	0.34	0.28	0.31	0.26	0.29
P _{ges.}	Grenzwert-Überschreitungen	Anzahl			0 (10)	0 (11)	0 (12)	0 (11)	1 (11)	0 (11)	0 (12)
3	Reinigungsleistung (Mittel)	%		80%	93%	94%	93%	94%	95%	96%	97%
	Unterschreitung Reinigungsleistung	Anzahl			0 (9)	0 (11)	0 (11)				

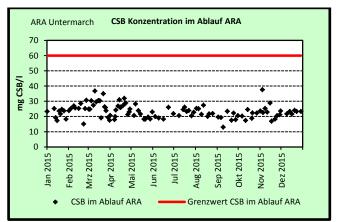
Legende: 1 Grenzwert 2 Richtwert 3 ganzjährige Nitrifikation ab 2009, einzuhalten bei Abwassertemperatur >10°C

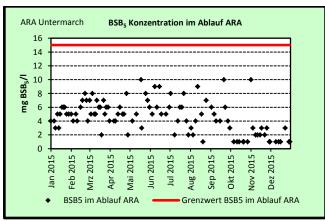
berschritten eingehalt

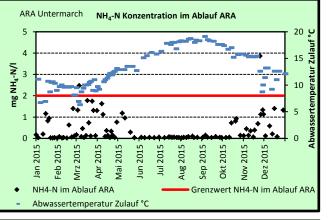
Der DOC wurde in den Vorjahren nicht gemessen. Ab Juli 2015 wurde dieser Pflicht nachgekommen und die Resultate sind sehr gut.

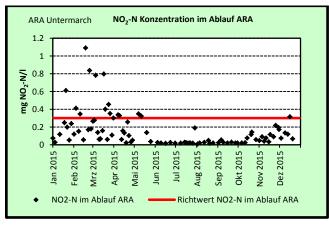
Die restlichen Ablaufwerte wurden häufiger als erforderlich gemessen. Die Parameter GUS, BSB₅, NH₄-N und P_{ges} zeigen keine Überschreitungen der Grenzwerte und weisen sehr gute Reinigungsleistungen auf.

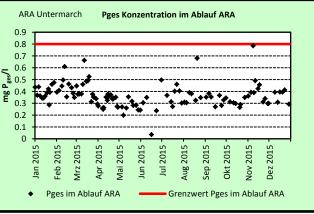

Die Nitrifikation kommt jedoch in den kühleren Monaten (Dezember bis Mai) an ihre Grenzen. Nicht nur die kalten Temperaturen, sondern auch andere Faktoren, wie beispielsweise Streusalz im Strassenabwasser oder Schmelzwasser können sich störend auf die Nitrifikation auswirken. Dies ist aus den etwas erhöhten Ammoniumwerten und insbesondere aus den Nitrit-Konzentrationen im Ablauf der ARA ersichtlich. Das Schlammalter sinkt Mitte Februar unter 10 Tage ab (minimal 8 Tage) und steigt erst wieder anfangs Mai auf über 10 Tage an. Dies ist bei Abwassertemperaturen von unter 10 °C knapp für eine vollständige Nitrifikation. Da der Schlammindex mit 100 ml/g niedrig ist und die Oberflächenbelastung der Nachklärung meistens unter 1 m/h liegt, sollte mit einem möglichst hohen TS in der Biologie gefahren werden (Zielwert > 3 g/l). Die bivalenten Zonen sollten aerob betrieben werden.


Amt für Umweltschutz


kanton**schwyz**


ARA Untermarch


Jahresauswertung 2015



Defizite und Massnahmen

- Verbesserung der Nitrifikation, Vermeiden von extrem hohen Nitrit-Konzentrationen im Ablauf der ARA. Wir empfehlen im Winter die Erhöhung des Schlammalters, sowie die Belüftung der bivalenten Zonen zu prüfen.
- Eruieren Einleiter (Industrie/Gewerbe) im Einzugsgebiet (zeitweilig hoher Luftbedarf in der Biologie).
- Für die ARA Untermarch ist die Personalrekrutierung dringlich, da zwei von vier Mitarbeiter in den nächsten Jahren in Pension gehen werden und eine Stufe zur Elimination von Mikroverunreinigungen geplant ist.

Seite 2 Legende siehe Seite 4 September 2016 September 2016 Legende siehe Seite 4 Seite 3